易购平台

  • <small id="pulgf"><video id="pulgf"></video></small>
    <tr id="pulgf"></tr>

    <tr id="pulgf"><small id="pulgf"></small></tr>
  • <tr id="pulgf"></tr>
    <ins id="pulgf"></ins>

      1. 愛運營首頁
      2. 營銷知識

      都說大數據時代來了,可我還不知道大數據的營銷價值何在呢

      許多人感覺到大數據時代正在到來,但往往只是一種朦朧的感覺,對于其真正對營銷帶來的威力可以用一個時髦的詞來形容–不明覺厲。實際上,還是應盡量弄明白,才會明白其厲害之處。

      都說大數據時代來了,可我還不知道大數據的營銷價值何在呢

      營銷是一門學問嗎?當然是,從人類有交易活動開始,營銷便一直存在,且隨著時代的變化而不斷產生新的形式。進入大數據時代,市場營銷也隨之而慢慢進化。

      在某些方面,當前的市場營銷行業也存在著前所未有的潛力,這便是大數據時代市場營銷專業就業方向的新趨勢。很多人表示,將傳統的市場營銷智慧與大數據的巨大威力相結合,可能會在定性分析和定量分析方面產生巨大的優勢。但是要做到這一點,首先還有很多工作要做。沃頓商學院運營與信息管理學教授桑德拉·希爾(shawndra hill)表示:“這是一個非常激動人心的時代。有大量的數據可挖掘,以深入了解客戶,了解他們的態度和他們在想什么。此外,數據挖掘在過去的十年已經取得了長足的進步,但我們還有很長的路要走……也就是要弄清楚人們說話背后的真正含義?!?/p>

      許多人感覺到大數據時代正在到來,但往往只是一種朦朧的感覺,對于其真正對營銷帶來的威力可以用一個時髦的詞來形容–不明覺厲。實際上,還是應盡量弄明白,才會明白其厲害之處。對于多數企業而言,大數據營銷的主要價值源于以下幾個方面。

      第一,用戶行為與特征分析。

      顯然,只要積累足夠的用戶數據,就能分析出用戶的喜好與購買習慣,甚至做到“比用戶更了解用戶自己”。有了這一點,才是許多大數據營銷的前提與出發點。無論如何,那些過去將“一切以客戶為中心”作為口號的企業可以想想,過去你們真的能及時全面地了解客戶的需求與所想嗎?或許只有大數據時代這個問題的答案才更明確。

      第二,精準營銷信息推送支撐。

      過去多少年了,精準營銷總在被許多公司提及,但是真正做到的少之又少,反而是垃圾信息泛濫。究其原因,主要就是過去名義上的精準營銷并不怎么精準,因為其缺少用戶特征數據支撐及詳細準確的分析。相對而言,現在的RTB廣告等應用則向我們展示了比以前更好的精準性,而其背后靠的即是大數據支撐。

      第三,引導產品及營銷活動投用戶所好。

      如果能在產品生產之前了解潛在用戶的主要特征,以及他們對產品的期待,那么你的產品生產即可投其所好。例如,Netflix在近投拍《紙牌屋》之前,即通過大數據分析知道了潛在觀眾最喜歡的導演與演員,結果果然捕獲了觀眾的心。又比如,《小時代》在預告片投放后,即從微博上通過大數據分析得知其電影的主要觀眾群為90后女性,因此后續的營銷活動則主要針對這些人群展開。

      第四,競爭對手監測與品牌傳播。

      競爭對手在干什么是許多企業想了解的,即使對方不會告訴你,但你卻可以通過大數據監測分析得知。品牌傳播的有效性亦可通過大數據分析找準方向。例如,可以進行傳播趨勢分析、內容特征分析、互動用戶分析、正負情緒分類、口碑品類分析、產品屬性分布等,可以通過監測掌握競爭對手傳播態勢,并可以參考行業標桿用戶策劃,根據用戶聲音策劃內容,甚至可以評估微博矩陣運營效果。

      第五,品牌危機監測及管理支持。

      新媒體時代,品牌危機使許多企業談虎色變,然而大數據可以讓企業提前有所洞悉。在危機爆發過程中,最需要的是跟蹤危機傳播趨勢,識別重要參與人員,方便快速應對。大數據可以采集負面定義內容,及時啟動危機跟蹤和報警,按照人群社會屬性分析,聚類事件過程中的觀點,識別關鍵人物及傳播路徑,進而可以保護企業、產品的聲譽,抓住源頭和關鍵節點,快速有效地處理危機。

      第六,企業重點客戶篩選。

      許多企業家糾結的事是:在企業的用戶、好友與粉絲中,哪些是最有價值的用戶?有了大數據,或許這一切都可以更加有事實支撐。從用戶訪問的各種網站可判斷其最近關心的東西是否與你的企業相關;從用戶在社會化媒體上所發布的各類內容及與他人互動的內容中,可以找出千絲萬縷的信息,利用某種規則關聯及綜合起來,就可以幫助企業篩選重點的目標用戶。

      第七,大數據用于改善用戶體驗。

      要改善用戶體驗,關鍵在于真正了解用戶及他們所使用的你的產品的狀況,做最適時的提醒。例如,在大數據時代或許你正駕駛的汽車可提前救你一命。只要通過遍布全車的傳感器收集車輛運行信息,在你的汽車關鍵部件發生問題之前,就會提前向你或4S店預警,這決不僅僅是節省金錢,而且對保護生命大有裨益。事實上,美國的UPS快遞公司早在2000年就利用這種基于大數據的預測性分析系統來檢測全美60000輛車輛的實時車況,以便及時地進行防御性修理

      第八,SCRM中的客戶分級管理支持。

      面對日新月異的新媒體,許多企業想通過對粉絲的公開內容和互動記錄分析,將粉絲轉化為潛在用戶,激活社會化資產價值,并對潛在用戶進行多個維度的畫像。大數據應用可以分析活躍粉絲的互動內容,設定消費者畫像各種規則,關聯潛在用戶與會員數據,關聯潛在用戶與客服數據,篩選目標群體做精準營銷,進而可以使傳統客戶關系管理結合社會化數據,豐富用戶不同維度的標簽,并可動態更新消費者生命周期數據,保持信息新鮮有效。

      第九,發現新市場與新趨勢。

      基于大數據的分析與預測,對于企業家提供洞察新市場與把握經濟走向都是極大的支持。例如,阿里巴巴從大量交易數據中更早地發現了國際金融危機的到來。又如,在2012年美國總統選舉中,微軟研究院的David Rothschild就曾使用大數據模型,準確預測了美國50個州和哥倫比亞特區共計51個選區中50個地區的選舉結果,準確性高于98%。之后,他又通過大數據分析,對第85屆屆奧斯卡各獎項的歸屬進行了預測,除最佳導演外,其它各項獎預測全部命中。

      第十,市場預測與決策分析支持。

      對于數據對市場預測及決策分析的支持,過去早就在數據分析與數據挖掘盛行的年代被提出過。沃爾瑪著名的“啤酒與尿布”案例即是那時的杰作。只是由于大數據時代上述Volume(規模大)及Variety(類型多)對數據分析與數據挖掘提出了新要求。更全面、速度更及時的大數據,必然對市場預測及決策分析進一步上臺階提供更好的支撐。要知道,似是而非或錯誤的、過時的數據對決策者而言簡直就是災難。

      那些尋找大數據營銷切入點的企業不妨看看上述應用,或許能有所啟發。

      消息源:CIO時代網

      去年今日運營文章

      1. 2019:  用戶邀請好友需要考慮的4個方面(0)
      2. 2019:  解讀用戶邀請機制,關注冰山下的數據!(0)
      3. 2019:  阿拉?。?019上半年小程序白皮書(0)
      4. 2019:  七麥研究院:2019年6月財務、購物App榜單排名(0)
      5. 2019:  卡思數據:2019年Q2短視頻KOL紅人深度分析報告(0)

      原創文章,作者:愛運營,如若轉載,請注明出處:http://www.fawz8.com/yxzs/17526.html

      發表評論

      登錄后才能評論

      聯系我們

      187-1891-2971

      在線咨詢:點擊這里給我發消息

      郵件:admin@iyunying.org

      工作時間:周一至周五,9:30-18:30,節假日休息

      QR code
      高碑店| 白城| 衡水| 延边| 灌南| 眉山| 大荔| 巴塘| 邛崃| 华坪| 景县| 平泉| 乐业| 昆山| 哈尔滨| 华安| 共和| 景洪电站| 邵阳| 武乡| 秦安| 来安| 合川| 湘乡| 宜宾县| 西平| 张家港| 垣曲| 丹江口| 黄陵| 鹤庆| 绥中| 沂水| 治多| 紫荆关| 洪洞| 兴平| 阳泉| 大勐龙| 民乐| 海原| 任县| 德江| 盱眙| 武冈| 龙胜| 上饶| 湘乡| 晋宁| 嵩明| 广州| 荣县| 巴盟农试站| 富县| 峡江| 正定| 永福| 延庆| 江山| 洪家| 容城| 武定| 祁东| 九江| 昭觉| 化德| 长乐| 苏尼特右旗| 巨鹿| 漳浦| 石景山| 金乡| 察哈尔右翼后旗| 鹰潭| 万山| 福州郊区| 贺州| 平和| 略阳| 酒泉| 榕江| 霍州| 峨眉山| 邗江| 泰顺| 安国| 阿拉善左旗| 且末| 香港| 南京| 临潭| 弋阳| 丰镇| 瓮安| 无锡| 敦煌| 长顺| 孤家子| 宁城| 峰峰| 西乌珠穆沁旗| 安平| 楚州| 鲁甸| 宜阳| 开鲁| 茂名| 长岛| 太仆寺旗| 福海| 内江| 拐子湖| 讷河| 诏安| 淮阴| 永昌| 武城| 宜良| 从江| 唐河| 阜城| 阳新| 香港| 东兴| 包头| 金川| 浏阳| 马坡岭| 墨玉| 屏边| 新晃| 井冈山| 绛县| 蔡甸| 尉犁| 绥德| 仙居| 曲阜| 皋兰| 新郑| 红河| 通许| 新津| 石岛| 改则| 安新| 若尔盖| 扎兰屯| 赤峰| 自贡| 马站| 荆州| 孟连| 乌兰乌苏| 竹溪| 八达岭| 喀左| 杭锦后旗| 成武| 曲阜| 昌吉| 乐至| 从化| 郓城| 密山| 酒泉| 德钦| 广南| 岳普湖| 凌源| 南阳| 茶卡| 瑞昌| 颍上| 涉县| 沁水| 阿坝| 无为| 平阴| 淳安| 唐海| 长岛| 洪江| 会理| 萝北| 河津| 大洼| 双辽| 桦甸| 泸溪| 嵊山| 曲周| 鲁甸| 十三间房气象站| 白银| 五常| 壶关| 中心站| 淮阴| 临夏| 务川| 获嘉| 柯坪| 桂林农试站| 舒城| 林芝| 石楼| 来安| 阿拉山口| 平乡| 夏县| 野牛沟| 咸丰| 阿里| 安陆| 荥阳| 耒阳| 漯河| 杭州| 西乌珠穆沁旗| 牙克石| 尉犁| 满都拉| 绛县| 庆阳| 福贡| 巴仑台| 略阳| 孪井滩| 准格尔旗| 邢台县浆水| 阿巴嘎旗| 准格尔旗| 通许| 左贡| 白城| 平舆| 四子王旗| 石屏| 桐梓| 冷水滩| 富民| 赫章| 盐津| 玉田| 黄陂| 左贡| 安吉| 景泰| 旌德| 尼勒克| 抚州| 勐海| 甘洛| 阳城| 郁南| 大通| 盐池| 刚察| 故城| 韦州| 阳泉| 北道区| 界首| 遂平| 绛县| 长海| 志丹| 祁阳| 耀县| 轮台| 安义| 扎鲁特旗| 嘉禾| 通山| 芜湖县| 九龙| 荥阳| 博兴| 拉萨| 苏尼特右旗| 三水| 绍兴| 陇县| 钟祥| 济南| 泾源| 珲春| 玛多| 固原| 宿松| 皋兰| 衡阳| 赤壁| 滦平| 庄河| 六安| 狮泉河| 无极| 万安| 寿阳| 宜宾| 秭归| 溆浦| 岚县| 涉县| 五河| 东兴| 韶山| 唐山| 林西| 政和| 三河| 丰县| 桦川| 巴彦诺尔贡| 枣强| 九江| 代县| 兴海| 南康| 马龙| 满都拉| 沭阳| 冀州| 迁安| 包头| 建宁| 汉中| 泗洪| 黄南| 汕头| 彭州| 阳山| 胡尔勒| 罗山| 繁昌| 凤阳| 平江| 安新| 静海| 习水| 万源| 深泽| 阿拉山口| 宜宾农试站| 雷州| 于田| 淮阳| 和政| 丹凤| 义县| 潮阳| 毕节| 日喀则| 汉中| 海伦| 久治| 汪清| 东营| 潮州| 锡林高勒| 永仁| 涪陵| 上林| 乌审旗| 恩施| 鄞州| 和县| 顺义| 扎兰屯| 大洼| 硕龙| 阿合奇| 惠阳| 永春| 耿马| 鹤岗| 海阳| 苏州| 万荣| 宝山| 静海| 万州龙宝| 伊和郭勒| 砚山| 株洲| 郑州农试站| 双峰| 安阳| 沿河| 林甸| 新密| 隆德| 新野| 招远| 泾源| 罗子沟| 河池| 大悟